World News Headlines

Coverage of breaking stories

If the current in each wire is the same, which wire produces the strongest magnetic field? -a wire that is 1 mm thick and not

source : estudyassistant.com

If the current in each wire is the same, which wire produces the strongest magnetic field? -a wire that is 1 mm thick and not

Physics, 22.06.2019 12:10

Consider a one meter long horizontal pipe with a constant 100 cm^2 cross sectional area. water flows rightward into the pipe at x = 0 with flow velocity 02m/sec at every point within the pipe intake area. at x=1, the rightward flow rate is 0.192 m/sec. assume the water is a conserved quantity in the pipe, so there must be a leak (a sink) somewhere in the pipe. 1. compute net volumetric flow of the source if the system to be in equilibrium. 2. now assume the pipe in the problem has no leaks. compute the net volumetric rate of change for the system.

Answers: 3

if the current in each wire is the same, which wire

if the current in each wire is the same, which wire – Click here 👆 to get an answer to your question ️ if the current in each wire is the same, which wire produces the strongest magnetic field keyannabarham keyannabarham 28.05.2020 Biology Primary School If the current in each wire is the same, which wire produces the strongest magnetic field 2 See answers St08 St08 Answer: A wire that is 2mmIf the current in each wire is the same, which wire produces the strongest magnetic field? a wire that is 1 mm thick and not coiled a wire that is 2 mm thick and not coiled a 1-mm-thick coiled wire with ten loops a 2-mm-thick coiled wire with two loopsThe magnetic field of a long straight wire has more implications than you might at first suspect. Each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields due to each segment.

If the current in each wire is the same, which wire – If the current in each wire is the same, which wire produces the strongest magnetic field? A.) a wire that is 1 mm thick and not coiled. B.) a wire that is 2 mm thick and not coiledB1 = magnetic field due to wire 1 B2 = magnetic field due to wire 2 B3 = magnetic field due to wire 3 B4 = magnetic field due to wire 4 The center of the square is equidistant from all four wires. Thus, at the center of the square, the magnetic field produced by each wire has equal magnitude. Now consider the directions of each magnetic field.Two wires A and B have the same length equal to 4 4 c m and carry a current of 1 0 A each. Wire A is bent into a circle and wire B into a square. (a) Which wire produces a greater magnetic field at the centre? (b) Obtain the magnitudes of the field at the centres of the two wires.

If the current in each wire is the same, which wire

22.11: Magnetic Fields Produced by Currents- Ampere's Law – Answer: 1 📌📌📌 question If the current in each wire is the same, which wire produces the strongest magnetic field? -a wire that is 1 mm thick and not coiled -a wire that is 2 mm thick and not coiled -a 1-mm-thick coiled wire with te – the answers to estudyassistant.comThe magnetic field lines of the infinite wire are circular and centered at the wire (Figure 12.3.2), and they are identical in every plane perpendicular to the wire. Since the field decreases with distance from the wire, the spacing of the field lines must increase correspondingly with distance.Parallel wires carrying currents will exert forces on each other. One wire sets up a magnetic field that influences the other wire, and vice versa. When the current goes the same way in the two wires, the force is attractive. When the currents go opposite ways, the force is repulsive.

Lakhmir Singh Physics Class 10 Solutions For Chapter 2 Magnetic Effects Of  Electric Current - Free PDF
Magnetic Fields
Lakhmir Singh Physics Class 10 Solutions For Chapter 2 Magnetic Effects Of  Electric Current - Free PDF
If The Current In Each Wire Is The Same, Which Wire Produces The Strongest  Magnetic Field? -a Wire - Brainly.com
Monolithic Mtesla-level Magnetic Induction By Self-rolled-up Membrane  Technology | Science Advances
20.1 Magnetic Fields, Field Lines, And Force | Texas Gateway
Section 1
PHYS EXAM 2 (Ch.14, 22, 23) Flashcards | Quizlet
Magnets And Properties Of Magnets : Teaching About Magnets & Magnetism
Magnetism Notes For IGCSE.pdf - IGCSE Physics Concepts Of Physics(Magnetism  1 Concept \u200bMotion Is A Very Important Condition In Magnetism  Explanation | Course Hero
Flare-productive Active Regions | SpringerLink

Magnetic Fields in a Circular Loop – We have seen what happens when current
is flowing through a straight conductor in a previous lecture.
Now let us see
what happens in a current carrying conductor with a slight twist. Over here
we place the conductor in a way so as to resemble a loop. So let us see what happens in a current
carrying loop. Over here we find that the conductor has
been placed in the shape of a loop and on a plastic board with two holes in it. Now when there is no current flowing, the
iron filings are randomly placed. Now what happens as soon as current
starts flowing, observe closely. The moment current
starts flowing in the current carrying Loop, a magnetic field will be generated
and the pattern of the magnetic field will be given by the iron filings as you can see. Over here the iron filings are no longer
randomly generated but they have arranged themselves in a particular
pattern around the current carrying loop. So the schematic of the experiment is
shown over here. Now over here we have considered a
cardboard on which the current carrying conductor is placed in the shape of a
loop. Two holes have been considered through
which the conductor passes to the Cardboard. Now through the placement of the iron filings on
both the sides, we are able to find out the pattern of magnetic field. Now how can we find out in which direction
the magnetic field lines are pointed? Now we can do either of two things. we
can use the right-hand thumb rule. So let's see what happens if I use the
right-hand thumb rule at this end. Now if i consider the pen as the current
carrying conductor, I can see that current is moving in the
upward direction. so my thumb will be pointing in the
direction of current and my fingers will be encircling the direction of the
magnetic field lines. So it will be in this direction or in this direction. So
as you can see the field lines are as Obtained. Similarly if I apply the right hand
thumb rule at this point, I will find that current
is flowing in the downward direction. so I consider my thumb in the downward
direction. So now you will notice that my fingers
are encircling in this direction. So this direction gives me the direction of the
magnetic field lines. As you can see, this is the direction of the magnetic
field lines. Now you might be wondering that this method is quite inefficient
because at both the ends you have to apply the thumb rule, there is a chance that you might forget
to invert your hand at this end. So in order to make things simpler, there
is a different rule to follow. Now let's see what that different rule is. Now
when current is flowing through this particular face of the loop, we find that
it is flowing in the anti-clockwise Direction. Now when it is flowing in the
anti-clockwise direction, with the help of a compass needle we can easily find out the direction of
the field lines. We will find that the field lines are coming out from this
particular face, that is at the face from which we see.
When current flows in the anti-clockwise direction, we will find that the field lines
are coming out of it. Now what have we started about field lines?
We have studied that field lines come out of the North Pole of the magnet. So we can say that when current is
flowing in the anti-clockwise direction, that loop is the north pole. Or in other
words that face of the loop at as the North Pole. Conversely if you consider the other
Face. Now in the other face, current will be flowing in the clockwise
direction. Now again if you consider a compass needle being placed at different
points to map the direction of the field lines, you will find that the field lines enter
this face of the loop. What have we studied about field lines ? We
have studied that field lines enter at the South Pole of the magnet. So
we can say that that face of the loop where current is flowing in the
clockwise direction, that face acts as the South Pole of the current carrying
loop. Now this entire thing can be visualized in
a much simpler manner. when current is flowing in the anti-clockwise direction, consider the letter N Now when it is flowing in the
anti-clockwise direction consider both ends of N and place arrows so as to indicate the
anti-clockwise direction. As you can see I have already done it for you. Now since this indicates anti-clockwise
direction in the letter N, N stands for North. So this represents the north pole. Similarly where current is flowing in a
clockwise direction, consider the letter S. Again consider both the ends of S and
draw two arrows pointing outwards. So as you can see these two arrows
depict the clockwise direction and the letter S stands for south. So this indicates the South Pole of the
current carrying loop. Now the same polarity which we had looking at a particular face,
that polarity can be reversed if we simply reverse the direction of current.
Because we have seen that when current flows in an anti-clockwise direction, it
is North pole and in clockwise direction it is South Pole. So let us say that we are standing at
and looking at the same face. We are looking at the same face of the
loop without changing our position. Now we can get different polarity on the
same face if we simply change the direction of current flow. Over here it
is anti-clockwise thus North. Over here simply by changing the
direction of current flow we have made it the South Pole. Thus on reversing the
direction of current in the loop we can get opposite polarity at the
same face of the loop. So this is how a current carrying loop
behaves. .

How Special Relativity Makes Magnets Work – القليل من العناصر فقط يمكنها أن تكون مغناطيسا دائما
الحديد هو أحدها.
النحاس ليس كذلك. لكنك إذا مررت تيارا كهربائيا في أي معدن فإنه يصبح
مغناطيسا – مغاطيس كهربائي لكن كيف يعمل؟ بغرابة , هذا نتيجة
النسبية الخاصة. النسبية الخاصة هي حقيقة أنه في هذا الكون
الطول و الوقت كميات غير مطلقة بل هي مُلاحظة بشكل مختلف لكل من مراقِبين
يتحركان بالنسبة لبعضهما البعض , ( من هنا جاءت كلمة نسبية ) مثلا, إذا قِست بشكل دقيق كفاية,
ستجد أن الوقت يمضي ببطء لمراقب يتحرك بالنسبة لك – يا ديريك, منذ متى حلقت آخر مرة ؟
– منذ 6 ساعات مضت ديريك المتحرك : حقيقةً, كانت قبل خمس ساعات, 59 دقيقة
و 59.99999999999 ثانية كذلك الأجسام المتحركة تتقلص
في اتجاه حركتها. تبدو نحيفا!
فقط في إطارك المرجعي " بالنسبة إلى المكان الذي تنظر منه و سرعتك" إذا, عندما يتحرك جسم بانسبة إليك,
فإنه يشغل حيزا أصغر بخلاف عندما يكون ساكنا. و رغم أن هذا التأثير بالغ الصغر
مقارنة بما عرضنا إلا أن تقلص الطول هو الذي يجعل المغناطيس الكهربائي
يعمل. تخيلوا سلكا من النحاس – إنه يتكون من أيونات معدنية موجبة
تسبح في بحر من الإلكترونات الحرة السالبة. الآن, عدد البروتونات الموجبة يساوي
عدد الإلكترونات السالبة, إذا شحنة السلك إجمالا متعادلة. إذا جاءت شحنة موجبة ..
أو… قطة موجبة الشحنة عن قرب, فإنا لن تتأثر بأي قوة
من السلك نهائيا. و حتى إذا كان هناك تيار يمر بالسلك,
فإن الإلكترونات سوف تتحرك باتجاه واحد لكن كمية الشحنات الموجبة و السالبة
ستبقى ثابتة و شحنة السلك ستبقى متعادلة, إذا
لا توجد قوى مؤثرة على القطة. لكن ماذا لو بدأت القطة بالتحرك؟ لتبسيط الأمر
تخيلوا أن القطة تتحرك في نفس اتجاه الإلكترونات
و بنفس سرعتها. الآن, بالنسبة إلى الإطار المرجعي الخاص بي , شحنة السلك لا تزال متعادلة و بالتالي
لا يجب أن توجد قوة على القطة, لكن انظروا إلى نفس الوضع بالنسبة للقطة. في الإطار المرجعي للقطة , الشحنات الموجبة
في السلك تتحرك, و بناء على النسبية الخاصة , المسافة بين الشحنات سوف
تتقلص قليلا. أيضا من هذا المنظور , الإلكترونات تبدو ساكنة و بالتالي
ستكون متباعدة أكثر من ذي قبل. – تذكروا, الأجسام تشغل حيزا أكبر
عندما تكون ساكنة بخلاف عندما تكون متحركة . هذان التغيران مجتمعان يعني أن هناك
كثافة أعلى من الشحنات الموجبة في السلك, إذا شحنة السلك لم تعد متعادلة – إنها موجبة الشحنة!
مما يعني أن القطة الموجبة الشحنة ستشعر بقوة كهربائية منفرة "طاردة"
من السلك. لكن من الإطار المرجعي الخاص بي هذا يبدو غامضا:
لا توجد قوة مؤثرة على القطة المشحونة الساكنة, لكن بطريقة ما, قطة متحركة تتنافر مع
مع هذا السلك متعادل الشحنة. كيف تحسب حساب هذه القوة ؟ حسنا,
نحن نقول أنها القوة المغناطيسية, وهذا بشكل رئيسي سببه أن أي سلك يمر فيه تيار يؤثر على
أي مغناطيس قريب. إذا , ما تظهره هذه التجربة حقا هو أن الحقل المغناطيسي هو مجرد
حقل كهربائي منظور إليه من إطار مرجعي مختلف في الإطار المرجعي للقطة, لقد تنافرت
مع السلك بتأثير الحقل الكهربائي المتكون بسبب زيادة الشحنات الموجبة التي أُنتجت
نتيجة تقلص الطول. أما في إطاري المرجعي, القطة نفرت من السلك
المتعادل نتيجة الحقل المغناطيسي الناتج من مرور التيار الكهربائي في السلك. إذا, سواء رأيتها كحقل كهربائي
أو مغناطيسي فهو يعتمد فقط على إطارك المرجعي, و لكن في كلا الحالتين , النتائج متماثلة .
إذا المغناطيس الكهربائي هو مثال يومي على النسبية الخاصة في العمل. الآن قد هذا يبدو غير معقول بما أن الإلكترونات
تتدفق عبر السلك بمقدار .0000000001% من سرعة الضوء – إذا كيف يمكن ان يكون للنسبية الخاصة
أي علاقة بهذا الأمر? حسنا , الحقيقة هي أن هناك عدد كاف من الإلكترونات في السلك ,
و التفاعل الكهربائي بين الإلكترونات قوي بشكل مدهش لدرجة أن تقلصا طفيفا في الطول
من الممكن أن ينتج كمية هائلة من عدم التوازن في الشحنة منتجا قوة ملحوظة. إذا النسبية الخاصة تفسر المغناطيس الكهربائي
– لكن ماذا عن المغناطيس الدائم؟ أجل! أعني أنه لا يمكن وجود تيار كهربائي
يدور داخل كتلة من الصخر , هل يمكن ؟ اضغط هنا للذهاب إلى MinutePhysics
حيث سنقوم باستكشاف الماغنيتايت , البوصلة , و كل العجائب حول المغناطيس الدائم. .

Four long, parallel conductors carry equal currents of I = 5.00 A. The figure below is an end view o – .