Coverage of breaking stories

source : symbolab.com

## Simplify radical expressions using algebraic rules step-by-step

\bold{\mathrm{Basic}}
\bold{\alpha\beta\gamma}
\bold{\mathrm{AB\Gamma}}
\bold{\sin\cos}
\bold{\ge\div\rightarrow}
\bold{\overline{x}\space\mathbb{C}\forall}
\bold{\sum\space\int\space\product}
\bold{\begin{pmatrix}\square&\square\\square&\square\end{pmatrix}}
\bold{H_{2}O}

\square^{2}
x^{\square}
\sqrt{\square}
\nthroot[\msquare]{\square}
\frac{\msquare}{\msquare}
\log_{\msquare}
\pi
\theta
\infty
\int
\frac{d}{dx}
\ge
\le
\cdot
\div
x^{\circ}
(\square)
|\square|
(f\:\circ\:g)
f(x)
\ln
e^{\square}
\left(\square\right)^{‘}
\frac{\partial}{\partial x}
\int_{\msquare}^{\msquare}
\lim
\sum
\sin
\cos
\tan
\cot
\csc
\sec
\alpha
\beta
\gamma
\delta
\zeta
\eta
\theta
\iota
\kappa
\lambda
\mu
\nu
\xi
\pi
\rho
\sigma
\tau
\upsilon
\phi
\chi
\psi
\omega
A
B
\Gamma
\Delta
E
Z
H
\Theta
K
\Lambda
M
N
\Xi
\Pi
P
\Sigma
T
\Upsilon
\Phi
X
\Psi
\Omega
\sin
\cos
\tan
\cot
\sec
\csc
\sinh
\cosh
\tanh
\coth
\sech
\arcsin
\arccos
\arctan
\arccot
\arcsec
\arccsc
\arcsinh
\arccosh
\arctanh
\arccoth
\arcsech
+

=
\div
/
\cdot
\times
<
” >>
\le
\ge
(\square)
[\square]
▭\:\longdivision{▭}
\times \twostack{▭}{▭}
+ \twostack{▭}{▭}
– \twostack{▭}{▭}
\square!
x^{\circ}
\rightarrow
\lfloor\square\rfloor
\lceil\square\rceil
\overline{\square}
\vec{\square}
\in
\forall
\notin
\exist
\mathbb{R}
\mathbb{C}
\mathbb{N}
\mathbb{Z}
\emptyset
\vee
\wedge
\neg
\oplus
\cap
\cup
\square^{c}
\subset
\subsete
\superset
\supersete
\int
\int\int
\int\int\int
\int_{\square}^{\square}
\int_{\square}^{\square}\int_{\square}^{\square}
\int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square}
\sum
\prod
\lim
\lim _{x\to \infty }
\lim _{x\to 0+}
\lim _{x\to 0-}
\frac{d}{dx}
\frac{d^2}{dx^2}
\left(\square\right)^{‘}
\left(\square\right)^{”}
\frac{\partial}{\partial x}
(2\times2)
(2\times3)
(3\times3)
(3\times2)
(4\times2)
(4\times3)
(4\times4)
(3\times4)
(2\times4)
(5\times5)

(1\times2)
(1\times3)
(1\times4)
(1\times5)
(1\times6)
(2\times1)
(3\times1)
(4\times1)
(5\times1)
(6\times1)
(7\times1)
\mathrm{Degrees}
\square!
(
)
%
\mathrm{clear}
\arcsin
\sin
\sqrt{\square}
7
8
9
\div
\arccos
\cos
\ln
4
5
6
\times
\arctan
\tan
\log
1
2
3

\pi
e
x^{\square}
0
.
\bold{=}
+

## Most Used Actions

\mathrm{simplify}

\mathrm{solve\:for}

\mathrm{expand}

\mathrm{factor}

\mathrm{rationalize}

Related »
Graph »
Number Line »
Examples »

Let’s Try Again 🙁

Try to further simplify

Verify

## Graph

Sorry, your browser does not support this application

## Examples

en

Exponents and Radicals Step-by-Step Math Problem Solver – 5.2 Integral Exponents In this section we will enlarge our set of exponents to include zero and the negative integers.We want laws E.1 through E.5 to hold for this larger set of exponents. If a!=0, then in order for a^0 to satisfy E.1, we would have a^0a^n=a^(0+n)=a^n Since 1 is the only real number such that 1a^n=a^n, we deﬁneAnswers: 3, question: answers Rewrite in simplest radical form x 5 6 x 1 6 . Show each step of your process. – allnswers…Rewrite in simplest radical form 1/x^-3/6? I am confused on how to simplify. Answer Save. 2 Answers. Relevance. Al. Lv 7. 6 years ago. It seems to me, if I remember the exponent rules that. 1/x^-3/6 is the same as 1 / x^-1/2 which is the same as x^1/2 / 1 which is the same as sqrt(x) 0 0?